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Abstract: Paraglacial processes represent the dominant mechanism of geomorphic 
change in deglaciating landscapes worldwide and are now being increasingly 
recognised as controls on deglacial and postglacial landscape dynamics. This reflects 
the influence of glacigenic lithospheric loading/unloading cycles and patterns of 
glacigenic erosion and deposition. Ireland is an important location for studying the 
impacts of paraglacial processes in the landscape, as it was strongly imprinted by the 
erosional and depositional imprints of late Pleistocene glaciations and was affected 
by rapid shifts in North Atlantic climate. Using examples from mountains, rivers and 
coasts from across Ireland, this study examines some of the varied landscape responses 
to paraglacial relaxation in these different settings. The purpose behind this study is 
to show how the styles of paraglacial response may vary over time and space, even 
within a single regional landscape, and this can help assess the sensitivity of different 
environments affected by paraglacial relaxation. This study proposes an evolutionary 
model that describes the paraglacial sediment cascade that has shaped the Irish 
landscape during the lateglacial and Holocene. Consideration of paraglacial processes 
can yield a better understanding of the postglacial evolution of mountain, river and 
coastal landscapes in Ireland. 
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Introduction 
The concept of paraglacial relaxation is increasingly being used to describe the responses 
of regional-scale geomorphic and sedimentary systems to the process of deglaciation 
(Ballantyne, 2002a; Cossart and Fort, 2008; Embleton-Hamann and Slaymaker, 2012; 
Cossart et al., 2013; Scapozza, 2016). The main reason behind this interest is concern with 
geohazards such as floods, landslides and debris flows that are now increasingly common 
in deglaciating mountain systems and regions including the Himalayas, Rockies, Andes 
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and Caucasus mountains (Keiler et al., 2010; McColl, 2012; Knight and Harrison, 2014). 
A primary motivation for this body of work is to better predict how today’s mountain 
landscapes will evolve under global warming (Owen et al., 2009; Knight and Harrison, 
2014; Huss et al., 2017). 

These geomorphic processes taking place in deglaciating mountains can be 
conceptually viewed under the broad term paraglacial. Paraglacial processes are defined 
as ‘nonglacial processes that are directly influenced by glaciation’ (Church and Ryder, 
1972, p.3059) and these tend to become dominant in any landscape as deglaciation 
progresses (Knight and Harrison, 2014). Several different approaches have been taken 
to describe models of landscape response to deglaciation. Ballantyne (2002a, p.375) 
considered paraglaciation to mean ‘glacially conditioned sediment release’ and thus 
could be measured through sediment flux cascades from source areas (mainly steep 
mountain slopes where glaciers last longest) to sinks along coastal fringes and in the 
nearshore zone. Ballantyne’s model described an exponential decay curve in sediment 
yield over time, returning to background yield rates over an (unspecified) time period 
that is in the order of 103–104 years. In detail, many of the interconnected parts within the 
paraglacial sediment system exhibit different spatial and temporal scales of behaviour. 
Studies of sediment release from glacial moraines (Curry, 1999; Mercier et al., 2009), 
landslides (Petley et al., 2007; McColl, 2012), and debris torrents (Johnson and 
Warburton, 2002; Micheletti and Lane, 2016) show how sediment yield can change in 
response to short term meteorological events, and transient antecedent conditions such 
as saturated ground (Keller, 2017). These studies highlight that a source-to-sink analysis 
of paraglacial systems does not capture the variability of controls or sediment dynamics 
existing within these systems, or their timescales of connection or disconnection which 
can interrupt the sediment cascade from one place to another within the system (Mercier, 
2008; Feuillet et al., 2014). 

Ireland is an important location for the study of paraglacial processes and landsystems. 
The Irish sector of the last British-Irish Ice Sheet responded rapidly to changes in 
North Atlantic climate, and the ice sheet also retreated rapidly. This may mean that 
the paraglacial record, which is amplified with rapid ice retreat, is likely to be highly 
developed. In addition, sediment transport pathways from source (mountains) to sink 
(lowlands) are short in Ireland, suggesting a more rapid sediment system response than 
in other regions. Better understanding of these paraglacial systems and their timings may 
provide insight into paraglacial responses in currently glaciated mountains undergoing 
global warming. The paraglacial legacy of the Irish landscape is only now starting to 
be appreciated (Wilson, 2017). We argue that the relationship between paraglacial 
processes and environmental change provides a powerful lens through which to examine 
lateglacial and postglacial climate change, and the processes that were driven by this. 
Indeed, it could be argued that even contemporary geomorphic processes shaping 
Ireland’s mountain and coastal environments display the imprint of past paraglaciation 
(Carter et al., 1987; Wilson, 2004; Ballantyne et al., 2013; Knight and Burningham, 
2014). This paper describes the evidence for paraglacial processes in three critical 
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geomorphic domains identified by Ballantyne (2002b): mountains, rivers and coasts. 
These represent the main source, transfer, and sink locations for sediments, respectively, 
according to Ballantyne’s (2002a) model. These three environments are discussed using 
specific examples from Ireland, in order to illustrate (1) the role of paraglacial processes 
in driving geomorphic change throughout the deglacial and postglacial period in Ireland, 
and (2) the different spatial and temporal scales over which these geomorphic changes 
have taken place. Comparison between the three environments highlights the complexity 
subsumed within a single paraglacial ‘system’ and shows that the concept of deterministic 
source-to-sink sediment systems is similarly complex. 

Glacial imprints in Ireland 
The geomorphic and sedimentary evidence for past glaciations in Ireland have been 
studied for over 150 years (e.g., Charlesworth, 1957; McCabe, 2008), but only in the 
last decades has mapping from remote sensing and radiometric dating (both radiocarbon 
and cosmogenic methods) provided insight into the different phases of ice advance and 
retreat (e.g., Greenwood and Clark, 2009; Harrison et al., 2010; Ó Cofaigh et al., 2012; 
Barth et al., 2016). It is now recognised that much evidence persists in the landscape 
for geomorphological events early in or predating the last glacial cycle, giving rise 
to a palimpsest of glacial landforms, including ribbed moraines and striae (Clark and 
Meehan, 2001; Smith and Knight, 2011), and preservation of much older sediments in 
karstic depressions (Vaughan et al., 2004). Although glacial erosion dominates in upland 
areas with extensive sediment deposition in lowland areas, modelling, geochemical 
and dating evidence suggests that the locations of ice dispersal domes migrated over 
time, accompanied by variations in basal thermal and hydrological regimes (Knight, 
1999, 2010). Dating evidence also reveals variations in the timing and rapidity of 
ice margin advance and retreat in different ice sheet sectors (Ó Cofaigh et al., 2012; 
Hughes et al., 2014). The glacial imprints in mountain environments in Ireland are 
dominated by erosional features including cirque basins, glacial valleys, abraded and 
bare bedrock surfaces, and transported erratic boulders. These imprints dominate 
in the Mourne, Wicklow, Kerry, and Blue Stack mountains. In lowland areas, glacial 
imprints are dominated by subglacial depositional landforms including ribbed moraines 
and drumlins. High meltwater production during deglaciation results in formation of 
subglacial eskers, and proglacial landforms including moraines, deltas and outwash fans 
that were formed during ice retreat across lowland landscapes. The distributions of these 
landforms have been mapped in several regional to local-scale studies (e.g., Greenwood 
and Clark, 2009). Ice flow from dispersal centres inland and towards coastal lowlands 
resulted in convergence of ice flow vectors towards coastal embayments which acted 
as natural sediment sinks. Following postglacial sea-level rise, glacial imprints found in 
today’s coastal landscapes include boulder armours within the intertidal zone and these 
help to develop contemporary beaches, formed by winnowing of fine matrix from glacial 
sediments, leaving the coarsest fraction behind (Carter and Orford, 1988; Greenwood 
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and Orford, 2008). More widely, glacial sediments have acted as an important source 
for reworking into Holocene coastal landforms, including beaches, estuary infills, and 
coastal sand dunes (Burningham and Cooper, 2004). 

Methods and approach
This study draws from our fieldwork in different physical settings across Ireland over 
several decades. In order to identify paraglacial landforms (sensu Church and Ryder, 
1972) and distinguish these from glacial landforms, the methodological approach taken in 
this study focuses on: (1) the geomorphological mapping and identification of diagnostic 
paraglacial landforms in mountains, river and coastal settings; (2) sediment analysis of 
paraglacial sediments including stratigraphy and provenance; and (3) radiometric dating 
of sediment layers, where available. This study also draws from the wider literature on 
lateglacial to postglacial landforms and environments in Ireland, but here interpreted 
through a paraglacial lens. 

Field evidence
This paper now discusses the evidence for paraglacial processes and landforms in 
mountain, river and coastal settings in Ireland. Key locations discussed in the text are 
marked on Figure 1. 

Paraglacial imprints in mountain environments

Erosional features dominate in glaciated mountain environments, and in Ireland this 
is manifested as cirque basins, glaciated valleys, and ice-scoured bedrock surfaces. A 
combination of net erosion and ice loading provides the preconditioning for formation of 
pressure release joints and development of rock slope failures (RSFs) generated during 
ice retreat. Rock surfaces are also affected by periglacial frost shattering and development 
of blockfields; these are seen across many upland areas of Ireland (Ballantyne and Stone, 
2015; Wilson and Matthews, 2016). Many blockfields can be considered as paraglacial 
landforms because their development is facilitated by the creation of ice-scoured bedrock 
surfaces or expanded pressure-release joints, and where cold (periglacial) environments 
have developed outside of glacier margins. In western Ireland, blockfields have been 
reactivated by slope movement, generating boulder lobes and, in places, possible relict 
rock glaciers (Figure 2a). 

Several studies have described different mass movements which affected Irish 
mountains after glacial retreat. Most of these studies have been informed by methodologies 
previously developed for the larger and higher Scottish mountains (e.g., Jarman, 2006; 
Ballantyne and Stone, 2013; Ballantyne et al., 2014a). These have focused on regional-
scale mapping of RSFs and cosmogenic exposure age dating of rock headwalls. In 
mountains of northwest Ireland, 10Be dating suggests that RSF took place mainly during 
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the lateglacial and within a few thousand years of ice retreat (Ballantyne et al., 2013). 
Based on a larger dataset across Scotland and Ireland, including mountain sites that 
were reoccupied by Younger Dryas glaciers, an uneven age distribution emerges. This 
suggests that deep- versus shallow-seated failures were released at different times, or 
that other triggers such as seismic disturbance were involved, or that Younger Dryas 
glaciers moved RSF debris, causing partial disruption of their age signals (Ballantyne 
et al., 2014b). Postglacial rockfalls, debris flows and scree accumulation inside Younger 

Figure 1: Map of Ireland (areas over 200m asl are shaded), showing the locations of 
mountain blocks named in the text (A–I), and sites shown in the photos of Figures 2–4 
(numbered). Mountain blocks are: (A) Mournes, (B) Wicklow, (C) Slieve Bloom, (D) Kerry,  
(E) Macgillycuddy’s Reeks, (F) Partry, (G) Blue Stack, (H) Donegal, (I) Sperrins. 
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Dryas ice limits in the Macgillycuddy’s Reeks (Co. Kerry), were used to calculate 
average rockwall retreat rates of 0.2 mm yr-1 during the lateglacial period (Anderson 
and Harrison, 2006). RSF locations in central Co. Donegal including the mountains of 
Errigal, Aghla More, Aghla Beg and Muckish show displaced intact or disaggregated 
bedrock masses, ridge crest lines and longitudinal depressions (Wilson, 2004). RSFs have 
also been identified along the western margin of the Antrim Plateau basalts associated 
with the promontories of Binevenagh, Donalds Hill, Benbradagh and Mullaghmore, Co. 
Derry (Southall et al., 2017). Cosmogenic ages (36Cl) record the timing of RSF activity, 
whereas radiocarbon dating (14C) of organic materials within RSF-generated depressions 
represents the minimum ages of the RSF. In this study on the Antrim Plateau basalts, 
18 samples were analysed for cosmogenic dating based on a paired sampling approach, 
with three samples taken from each site immediately above and below failed slopes 
(Southall et al., 2017). The cosmogenic ages from this study cluster in the deglacial 
period 18–17 kyr, broadly representing the timing of local ice retreat and debuttressing 
of bedrock slopes. However, there is relatively wide scatter of the three ages from each 
site, with some ages not overlapping at 1 level. In addition, the global CRONUS-Earth 

Figure 2: Examples of glacial-paraglacial imprints in Irish mountains. (a) Blockfields, 
remobilised into boulder lobes, on Corraun (Co. Mayo); (b) oversteepened bedrock slopes 
and a glacially breached valley, Gap of Dunloe (Co. Kerry); note the rock slope failure 
present at the back of the cirque (left middle of image); (c) scree slopes masking the lower 
slopes of a glacial cirque, Lough Slat (Co. Kerry); (d) talus cone, Gap of Dunloe (Co. Kerry).
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calibration dataset used (Marrero et al., 2016) might not provide the most appropriate 
local nuclide production rate. The calibrated radiocarbon ages on organic sediments 
contained in land surface depressions associated with the RSFs cluster in the periods 
1300–1500 and 300–500 cal yr BP, the former representing climatic deterioration and 
the latter land use change (Southall et al., 2017). At Muckish (Co. Donegal), Wilson and 
Matthews (2016) examined RSF blocks and different periglacial landforms (blockfields, 
talus, boulder lobes and debris cones) and used Schmidt hammer surface exposure 
dating to assess their relative ages. Results suggest a dominantly early Holocene age for 
these different features, and some evidence for late Holocene slope reactivation. These 
studies in Irish mountain geomorphology highlight the importance of local-scale factors 
including microclimate variability, aspect, rock type and structure, and feedbacks caused 
by vegetation and soil cover. These factors mean that calculated ages of mass movements 
may reflect local rather than regional (glacial unloading) controls (Southall et al., 2017). 
Today, oversteepened rock slopes still exist in the landscape, as a glacial relict, whereas 
other slopes may be partly or wholly covered by later scree or debris cones (Figure 2), 
which can be formed in both cold and warm climate regimes and thus span lateglacial 
and Holocene periods. 

Paraglacial imprints in fluvial environments

Studies on Irish rivers have not commonly viewed their Holocene dynamics or landform 
record through a paraglacial lens or have been examined as source-to-sink systems (Figure 
3a). There are few basic geomorphic studies on Irish rivers, including their sedimentology 
and dating of terrace or floodplain deposits. The most significant and irreversible impact 
that glaciation has on river systems is through net erosion, mainly in bedrock headwater 
areas, leading to local migration of drainage divides. There is some evidence for this in 
the Sperrin Mountains (Colhoun, 1966). More visibly, subglacial erosion either by ice or 
meltwater has led to 3rd- or 4th-order catchments being split up by the formation of new 
valleys or channels that are incised deep into pre-existing hills or ridges. These valleys are 
termed glacial breaches. Good examples are known from most mountain blocks across 
Ireland, including Hollywood Glen (Co. Wicklow) (Figure 3b). Many breached valleys, 
as well as many U-shaped upland valleys that have been widened by glacial incision, are 
deeply incised into bedrock which is exposed on valley sides or have been later infilled 
by (mainly deglacial and some Holocene) sediments (Croke, 1994; Hegarty, 2012). In 
the latter case, this results in underfit rivers with very shallow long profiles. From initial 
work on the River Liffey by Cole (1912), several Irish rivers are known to have changed 
their courses as a result of glacial erosion (and sometimes deposition), although there are 
few recent studies on these rivers. Mitchell and Ryan (1997) discuss several examples. 
On the River Shannon, retreating ice to the west acted as a blockage to southward river 
flow in the area of Strokestown (Co. Roscommon). This diverted river flow eastwards 
through a sandstone and shale ridge at Derrycarne Narrows, and into its present channel 
at Termonbarry and Lanesborough (Co. Longford), 10km east of its original position. 
In a second example, drainage of a glacial lake across a bedrock ridge north of Galbally 
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(Co. Limerick), cut a deep overflow channel and diverted surface water from the north-
flowing River Shannon into the south-flowing River Blackwater. 

Different paraglacial expressions can be identified at different points along the river 
long profile. Some river terrace deposits derived from the lateglacial/early Holocene 
period are located in river headwater areas in mountain valleys. For example, within 
the Gaddagh River valley, Macgillycuddy’s Reeks, single and paired terraces have been 
linked to phases of sediment and meltwater release and subsequent phases of reworking 
from retreating mountain glaciers (Anderson et al., 2004). The contribution of different 
sediment sources to these paraglacial river terraces is unknown; potentially this can 
include reworking of glacial moraines or outwash. Sediments within these terraces include 
clast-supported, imbricated conglomerates that suggest deposition from debris flows and 
high-energy flood events dominated by bedload transport (Anderson et al., 2004). The 
terraces were developed inside lateglacial moraines; therefore, the river quarried pre-
existing glacial material to create the terraces and the fluvial system was isolated from 

Figure 3: Examples of paraglacial imprints in Irish rivers. (a) Source-to-sink fluvial sediment 
system of the Glen Peninsula (Co. Donegal). Sediment is contributed from paraglacial 
slope storage areas: (1) to the underfit river channel, (2) and then to coastal depocentres 
in Loughros Beg (3). However, it is unlikely that any sediment completes this journey 
unimpeded; (b) breached watershed in the form of a subglacial meltwater channel, 
Hollywood Glen, Wicklow Mountains (Co. Wicklow); (c) interlocking spurs developed in 
slope sediments within a confined valley, Glencolmcille (Co. Donegal); (d) aggradational 
paraglacial floodplain with paired terraces, Gaddagh valley (Co. Kerry).

a

c

b

d
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surrounding mountain sides by the lateral moraines. Any change in the fluvial system 
was, therefore, climatic or related to isostatic uplift, rather than driven by sediment 
fluxes from valley sides. It is notable that there are areas of high paraglacial sediment 
storage within mountain valleys (Figure 3c, d), leading to very constricted valley floors, 
interlocking spurs and limited capacity for sediment export into middle river reaches. 
These middle reaches on Irish rivers are very little known. Gallagher (1997, 1998) used 
the presence of heavy minerals within alluvial and channel deposits as an indicator of 
erratic carriage by glaciers into the Slieve Bloom massif (Co. Offaly). Thus, mineralogical 
composition and other properties of river sediments such as grain size distribution may 
reflect a paraglacial imprint. 

In lowland river landscapes, there is very limited evidence for a direct glacial imprint 
on the river systems. Seismic data show the positions of the lateglacial lowstand River 
Lagan channel in Belfast Lough (Kelley et al., 2006). Similar geophysical and borehole 
data were used to identify and map similar lowstand channels of the River Lee and 
Owenboy River (Co. Cork), that were subsequently infilled during postglacial sea-level 
rise (Davis et al., 2006). However, it is notable that previous interglacial sediments are 
also preserved within these palaeochannels (Dowling et al., 1998), and that they were 
merely reoccupied during later glacial and interglacial phases. 

Paraglacial imprints in coastal environments

The paraglacial context of coastal landforms in Ireland has been discussed over a long 
period (Carter and Orford, 1988; Greenwood and Orford, 2008; Wilson, 2017). The basis 
behind this association is that glacigenic sediment was transported to and deposited in 
particular on the Atlantic continental shelf during the late Midlandian and was extensively 
reworked onshore by wind and water following ice retreat. Today’s coastal environment 
contains large volumes of loose sandy sediments within the nearshore zone, on beaches, 
within sand dunes, sand flats and estuaries that are relatively immobile or relict under 
today’s environmental conditions. This fact suggests that these sediments were derived by 
processes that are no longer active, or under environmental conditions that are different 
to those prevailing today. In addition, submarine geophysical data show that relict sandy 
landforms (subaqueous dunes, beaches, channels) lie preserved on the continental shelf 
or below wave base, showing that they were formed under different sea-level conditions 
and then were overstepped and drowned by postglacial sea-level rise (McDowell et al., 
2005; Kelley et al., 2006). Several significant coastal landforms, found around the Irish 
coastline today, can be considered as paraglacial features. These are now described. 

Ice convergence and sediment deposition in lowland embayments, especially in 
western Ireland, resulted in the formation of drumlins and ribbed moraines. Where 
these landforms are present within today’s intertidal zone or are intersected by sea 
level, coastal erosion can cause undercutting of glacial cliffs leading to slope failure and 
sediment release to the marine environment (Forbes and Syvitski, 1994; Manson, 2002; 
Himmelstoss et al., 2006). Examples have been well described from Co. Donegal (Knight, 
2011), Co. Down (McGreal, 1979), Clew Bay (Hanvey, 1988), Galway Bay (McCabe and 
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Dardis, 1989) and Strangford Lough (Greenwood and Orford, 2008). Following erosion 
of this glacial sediment by waves and tides, cobbles and boulders tend to be left within 
the intertidal zone as a residual lag (e.g., Figure 4a) which acts as an armour against 
beach erosion. Erosion of small drumlin islands over time means that progressively these 
obstacles are reduced to mounds of boulders, changing the morphology and sediment 
budget of the intertidal zone (Greenwood and Orford, 2008). In Loughros Beg (Co. 
Donegal), small drumlin islands are surrounded by a residual armour of boulders, and 
have acted as barriers that decrease tidal energy, encouraging the development of muddy 
intertidal creeks and saltmarsh on their landward sides (Figure 4b). Carter and Orford 
(1988) developed a conceptual model for coastal erosion of drumlins in Clew Bay, and 
the transformation of drumlin sediments into gravel ridges, prograding leeside gravel 
beaches, washover fans and migrating sandy barriers and spits. Fine sediments released 
by drumlin erosion may be washed out to sea or retained nearshore within today’s 
estuaries and fringing saltmarshes. Cooper (2004) classified Irish estuaries based largely 
on their relict paraglacial status. Those in northwest Ireland are dominantly barred 
drowned valleys, whereas in western Ireland bar-built estuaries dominate. Back-barrier 
lagoon fills and saltmarsh sediments in western Ireland are derived ultimately from 
nearshore glacial sediment sources (Delaney and Devoy, 1995). A detailed case study of 
Connell’s Bank, Loughros More (Co. Donegal) shows how a glacial moraine now located 
within the intertidal zone has been modified over time by different physical drivers and 
processes. These include winnowing of the cobble surface by postglacial sea-level rise, 
waves and tides; sediment supply to adjacent beaches and sand dunes; aeolian abrasion 
and formation of ventifacts; and control by the bank on the position of today’s tidal 
channels (Knight and Burningham, 2014). 

Throughout western Ireland, coastal sand dunes, sandy beaches, saltmarsh and 
estuaries are the expression of high postglacial sediment supply provided from glacigenic 
sediment sources. Thus, they can be considered to reflect enhanced paraglacial sediment 
supply. There are very few dating studies on Irish sand dunes, but most dates from the 
north coast dunes are from the late Holocene and generally correspond to cooler, windier 
climatic periods with higher onshore sediment supply (e.g., Wilson and Braley, 1997; 
Wilson et al., 2004). At Magilligan foreland (Co. Derry), beach ridges started to form 
around 7000–6500 years BP, likely associated with the mid-Holocene highstand (Wilson 
and Farrington, 1989). Development of very large spits (e.g., Rossbeigh, Co. Kerry, 
Figure 4d) attests to high sediment supply and a highly energetic Atlantic-facing coast. 
Luminescence dating of Inch Spit, directly opposite Rossbeigh Spit in Dingle Bay (Co. 
Kerry), and the high scatter of the luminescence signals in the samples, reveals both young 
ages of the sediment (150–600 years) and high sediment dynamics (Wintle et al., 1998). 
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Discussion
Ireland bears the erosional and depositional signatures of late Pleistocene glaciations, 
but its landscapes today are not a static representation of the past, but rather are in 
continued evolution through changing patterns of sediment availability (landforms) and 
sediment yield (erosion). Thus, the landscapes of Ireland can be considered to bear a 
strong paraglacial imprint. However, this imprint is not spatially or temporally uniform. In 
a sediment systems context, a paraglacial response is usually initiated in steep mountain 
environments. Then, high sediment yield by slope instability and high fluvial sediment 
transport results in high sediment yield into lowland river systems and finally to fronting 
coasts (Knight and Harrison, 2009). This viewpoint assumes that this sediment cascade 
system is integrated and that there are no time lags, imposed by sediment capture, 
within the system (Figure 5). However, as presented above, the paraglacial processes and 
signatures in mountains, rivers and coasts in Ireland do not reflect a conveyor belt-like 
system of sediment transport. Instead, sediment is captured (buffered) at geomorphic and 

a

c

b

d

Figure 4: Examples of paraglacial imprints along Irish coasts. (a) Steep eroded face of a 
drumlin at White Strand, Galway Bay (Co. Galway). Loose boulders excavated from the cliff 
face are left as a residual lag across the foreshore; (b) eroded drumlins and sand-choked 
estuary at Loughros Beg (Co. Donegal); (c) intertidal cobbles and sand on a gravel bank 
(Connell’s Bank, Co. Donegal); (d) Rossbeigh spit (Co. Kerry). 
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topographic constrictions in the landscape, within mountains and coasts. Figure 5 presents 
a model illustrating how a source-to-sink paraglacial sediment conveyor belt applies in 
Ireland. In mountains, paraglacial sediment is captured in valleys and export from these 
valleys is restricted due to confinement of the river channel (Figure 3). Along rivers, 
low sediment supply, underfit river channels, low river gradients, and wide floodplains 
with very low accommodation space mean that many lowland river systems in Ireland 
are geomorphically ineffective except under extreme floods (Turner et al., 2010). It is 
notable that in lowland reaches, fluvial sediment yield declines through the Holocene as 
floodplains are buried by peat growth (Thorp and Glanville, 2003). On coasts, sediment 
within sand dunes, estuaries, saltmarsh and beaches has built up progressively over time, 
mainly in the Holocene as sea level stabilised. These sediment stores have acted as a buffer 
against continued sea-level rise. The Irish coast receives very little ‘new’ sediment from 
incoming rivers, and present coastal dynamics involve reworking of pre-existing intertidal 
and nearshore landforms, including drumlins (Figure 4). 

What is notable is that paraglacial sediment systems in Ireland are strongly 
compartmentalised, with areas of sediment constriction between the process domains 
of mountains, rivers and coasts (Figure 5). This contrasts with many studies in Canada 
and the European Alps that show strong coupling between sediment stores (Caine and 
Swanson, 1989; Schrott et al., 2002). Ballantyne (2002a) proposed a total paraglacial 
system relaxation time of around 103–105 years in total; focusing on linkages between 
particular slope elements, Cossart and Fort (2008) proposed slightly different decadal 
timescales for individual slope components. These models all show that sediment yield 
is initially high but then decreases over time as the sediment store is depleted. Evidence 
from Ireland suggests that slope stabilisation and vegetation cover (including lowland 
peat), not decreased total sediment storage, has caused sediment yield to reduce through 
the Holocene. 

Figure 5: Model of paraglacial landscape evolution in Ireland.
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Conclusions 
Ireland is strongly influenced by paraglacial processes. As a result, today’s  
geomorphological and sediment systems are still responding to the effects of late 
Pleistocene glaciations. However, examination of mountain, river and coastal landforms 
and sediment systems shows that these landscapes have, and still are, responding 
in different ways and over different spatial and temporal scales. As an exemplar of a 
landscape under paraglacial change, Ireland shows somewhat different dynamical 
behaviour compared to the well-studied systems of the European Alps and Canada. 
Here, lowland peat bog growth has acted as a hydrological and sedimentary buffer for 
sediment transport, limiting the connectivity between mountain source and coastal sinks 
(Figure 5), despite the short transport paths available in Ireland. Better understanding of 
mountain, river and coastal sediment systems and dynamics in Ireland can build towards 
a better appreciation of the role of the paraglacial process domain in shaping today’s 
landscapes. 
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