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Abstract: Understanding where ticks are found, and the drivers of their geographic 
distributions is imperative for successful epidemiological precautions. Predictive 
models of tick distributions are often projected using solely abiotic (e.g. climate) 
variables, despite the strong biotic interaction that host species undoubtedly have with 
parasitic species. We used species distribution modelling to project the distribution 
of Ixodes ricinus in Ireland and the United Kingdom using different combinations 
of abiotic, biotic, and abiotic-biotic variables. We found that models parameterised 
solely on abiotic variables generally reported lower accuracy and ecological realism 
than models that incorporated biotic factors alongside climate. We also investigated 
representation of host distribution in models, testing four different methods (habitat 
suitability of individual hosts, presence-absence of individual hosts, ensembled habitat 
suitability, and ensembled presence-absence). Biotic representations of ensembled 
host distributions alongside abiotic variables reported the highest accuracy, with the 
variable representing host diversity (e.g. number of host species) the most important 
variable when measured using a jackknife test. Moreover, our results suggested how 
host distributions are represented (i.e. presence-absence, habitat suitability) greatly 
impacted results, with differences reported among habitat specialists and generalists. 
Results suggest that it is now imperative for projections of parasitic species to include 
a representation of biotic factors with host species. This research has improved our 
understanding of the drivers of tick distributions in a national context, and the 
investigation of biotic representation should foster discussion among researchers 
working in species distribution modelling and the wider biogeography discipline. 

Keywords: biotic interactions; host species; parasitism; species distribution modelling; 
ticks



106
Incorporating host-parasite biotic factors in species distribution models: Modelling the 
distribution of the castor bean tick, Ixodes ricinus. 

Introduction
Ticks are one of the most important global vectors in the transmission of disease (Kelly 
et al. 2001), known to carry a wider variety of infectious agents compared to other 
arthropods (Soenshine, 1991). Within Europe Ixodes ricinus is the most common 
arthropod vector (Parola & Raoult, 2001), with the ability to transmit various pathogens, 
including Borrelia burgdorferi (Lyme disease – Pietzsch et al. 2005). Global incidence rates 
of Lyme disease vary, but most reported cases are found in Europe and North America, 
with research indicating increasing incidence rates (Mead, 2018). In Ireland, varied 
incidence and infection rates across both space and time have been reported (Gray et al., 
1996; McKeown and Garvey, 2009; Cullen, 2010; Lambert et al., 2019), with the crude 
incidence rate of Lyme neuroborreliosis progressively increasing towards the south and 
west of the country (HSE, 2019). Reports in the UK have identified an increase from 693 
cases in 2005 to 1,310 cases in 2016 (Lorenc et al., 2017). Due to increasing incidence 
rates and the spatial variability in reports, understanding where ticks are found, and 
the drivers of their geographic distributions is imperative for successful epidemiological 
precautions.

In Ireland and the UK studies have predominantly focused on reporting the presence 
and density of tick species at a national scale using fieldwork and location maps (Martyn, 
1988; Kirstein et al., 1997; Kelly et al., 2001; Dobson et al., 2011a; Medlock and Leach, 
2015; Zintl et al., 2017). For example, both Kirstein et al. (1997) and Kelly et al. (2001) 
produced location maps indicating presence of tick species from field studies in Ireland, 
while in the UK, Martyn (1988) published the first atlas of tick distributions, with the 
tick surveillance scheme continued by Public Health England. Most recently, Zintl et al. 
(2017) reported 151 tick observations from 26 sites across Ireland. Such studies improve 
our understanding of the environmental drivers of tick abundance and densities, but are 
often restricted spatially to specific locations. 

Species distribution models (SDMs) are one of the most important GIScience research 
areas in biogeography, and a powerful spatial ecological tool for studying the geographic 
distribution of plants, animals, and other taxa (Franklin 2009; Peterson et al. 2011). 
The modelling framework provides a methodology for researchers and practitioners to 
quantitatively assess the relationship between species distributions and environmental 
factors, having been widely used for various applications including predicting disease 
spread (Peterson et al., 2004; Crowl et al., 2008; Bhatt et al., 2013). In Europe, tick SDMs 
have primarily been undertaken at a continental scale. For example, Alkishe et al. (2017) 
modelled the current and future (2050 and 2070) distribution of I. ricinus based on 
several climatic factors and identified that distributions are expected to increase in area 
under all future climate scenarios. Similarly, Williams et al. (2015) identified a shift to 
higher latitudes for eight European tick species for 2050 and 2098. Several other studies 
have undertaken distribution projections for ticks at regional (De Clercq et al., 2015; 
Raghavan et al., 2016; St John et al., 2016), continental (Springer et al., 2015; Rubel 
et al., 2016; Hahn et al., 2016; Sage et al., 2017), and even global (Alkishe et al., 2020) 
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scales. All studies identified the importance of climatic factors, with many outlining the 
potential risk associated with increased human exposure to such a prevalent disease 
vector. 

Climatic factors are an important determinant of species distributions; however, 
they are not the sole driver. The ‘BAM’ framework (Figure 1), developed by Soberón and 
Peterson (2005), illustrates the individual and joint effects of the three most important 
factors in determining a species distribution. Biotic (B) factors represent interactions 
with other species (e.g. competition, parasitism), abiotic (A) factors represent the 
physiological tolerances of the species (e.g. temperature, precipitation), and movement 
(M) factors represent the ability of a species to access the habitats (e.g. dispersal, 
foraging). The importance of all three factors is well recognised, yet in the majority of 
the aforementioned studies projecting tick distributions, models were parameterised 
on only abiotic factors. The fact that ticks have a wide range of hosts, which often lack 
good-quality occurrence data, as well as uncertainty in how best to incorporate such data 
into model parameterisation, have been cited as rationale for focusing on climatic factors 
when projecting tick distributions (Alkishe et al., 2020). Moreover, abiotic factors have 
often superseded biotic factors in SDMs due in part to the fact that abiotic factors often 
influence species at a broader spatial extent (Wisz et al., 2013; Miller and Holloway, 
2015). Despite this, distribution studies that have included biotic factors have observed 
increases in model accuracy (Araújo and Luoto, 2007; Heikkenen et al., 2007; Kissling 
et al., 2008; Wisz et al., 2013; Raath et al., 2018), meaning distribution models could be 
improved by explicitly incorporating biotic factors. 

Figure 1. The BAM diagram, which depicts the interaction between biotic (B), abiotic (A), 
and movement (M) factors. Three areas are depicted: G the geographical space within which 
analyses are developed, Go = the occupied distributional area, and Gi = the invadable or 
potential distribution or BA. Modified from Soberón (2007).
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Studies have emerged that incorporate both abiotic and biotic factors when projecting 
tick distributions, often resulting in improved accuracy and ecological realism (Medlock 
et al., 2013; Donaldson et al., 2016; Estrada-Peña and de la Fuente, 2017). For example, in 
a study predicting Ornithodoros turicata distribution in the continental USA, Donaldson 
et al. (2016) overlaid the predicted tick distribution with the distributions of 58 host 
species, and identified areas of significant overlap that could identify principal hosts. 
Similarly, Estrada-Peña and de la Fuente (2017) incorporated probabilities of occurrence 
of host species in their tick distribution models, finding significant tick-host relationships 
among the complex communities of host species. The importance of incorporating biotic 
factors as covariates in any statistical models projecting species distributions is well 
established; however, it is perhaps more pertinent for parasite species that have such 
a strong dependence on hosts (Wisz et al., 2013). Recent reviews (Wisz et al., 2013; 
Dormann et al., 2018; Blanchet et al., 2020) have outlined several challenges associated 
with incorporating biotic factors within SDMs, one of which is the method through 
which the biotic factors are represented. Raath et al. (2018) recently compared four 
methods of incorporating biotic factors (host plant distribution) in SDMs projecting the 
distribution of the African silk moth in sub-Saharan Africa. They found that the method 
with which biotic factors were represented in the statistical model (e.g. presence-absence 
of individual hosts, habitat suitability of individual hosts, combined presence-absence 
of all hosts, and combined habitat suitability of all hosts) greatly affected the predictive 
ability of the models, yet there was inconsistency among representations, suggesting a 
need for further research. 

With the incorporation of biotic factors (i.e. host distributions) as environmental 
covariates in statistical models shown to improve projections of tick distributions, coupled 
with the fact that several tick SDM studies still neglect host distribution altogether, there 
persists a need to investigate the methods of representing biotic factors within SDM, and 
how their incorporation impacts the current geographic predictions of ticks. In this study, 
we investigated the role of biotic (B) and abiotic (A) factors in determining the distribution 
of I. ricinus in Ireland and the UK focusing on two specific research questions: 1) How do 
different ‘BAM’ scenarios (e.g. A, B, BA) affect the accuracy and ecological realism of I. 
ricinus projections in Ireland and the UK? and 2) How do different representations of host 
species (e.g. B) affect the accuracy and ecological realism of the projections? 

Methodology
Data Collection

We acquired 172 primary occurrence records for I. ricinus across Ireland and the UK since 
2000 from the Global Biodiversity Information Facility (GBIF, 2020). Following GBIF data 
cleaning recommendations (Chapman, 2005), incomplete points and duplicates were 
removed, resulting in 132 occurrence records for use in the statistical models. Data for 16 
primary host species were also obtained from GBIF (2019). Climate data was obtained 
from WorldClim (Fink and Hijmans et al., 2017) and resampled using cubic convolution 
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to 1000m. Corine land cover (EEA, 2018) data was used to calculate the percentage of 
arable, forest, grass, pasture, urban, and water cover within a corresponding 1000m 
resolution. 

Species Distribution Modelling

SDMs generate a prediction of habitat suitability in both environmental and geographic 
space. The most common response variables used are data representing species 
presence-absence or presence-only, which are coupled with a set of corresponding and 
georeferenced environmental variables. Species-environment relationships are then 
estimated using a range of statistical approaches. These species-environment relationships 
can be extrapolated in space and time generating a habitat suitability map that identifies 
the probability that the environmental conditions at that location are favourable for the 
study species. To create a categorical representation of habitat suitability, a threshold 
that delineates between presence-absence can be selected, with habitat suitability values 
above and below this predicted as present and absent, respectively. The choice of response 
data, environmental data, and statistical models are all related to hypotheses derived 
from the underlying niche concept. As outlined above, the choice of environmental 
variables can have substantial implications on model output. Here, we investigated three 
different ‘BAM’ scenarios. Each scenario incorporates different methodologies to derive 
environmental variables based on the ‘BAM’ diagram (Figure 1). Figure 2 provides a 
methodological workflow of the SDM steps used in this study. 

Maximum entropy (MaxEnt) was chosen as the statistical method to model the 
species-environment relationships for all scenarios (Phillips et al., 2006). MaxEnt selects 
suitable environmental variables by measuring how well they delineate between the 
recorded presence and pseudo-absence observations. The method chooses the split in 
environmental variables (e.g. temperature) that records the purest split between values 
in the binary response variable (e.g. presence and pseudo-absence). This method has 
been found to outperform other presence-only methods in an extensive comparison study 
(Elith and Graham, 2009). Moreover, MaxEnt is robust to variable collinearity in model 
training and the removal of highly correlated variables prior to model parameterisation 
has little impact due to the fact the algorithm removes redundant variables (Feng et al., 
2019), meaning MaxEnt is a robust method to evaluate different combinations of multiple 
environmental variables. However, the potential for spurious results and overfitting still 
exists and results need to be underpinned with a mechanistic understanding related to 
their contribution in determining tick distributions (Holloway et al., 2018). To do this, we 
implemented the jackknife test to measure variable importance and explore the impact of 
variable representation on results. In the final MaxEnt model, the maximum number of 
iterations was set to 5,000 to allow model convergence, the number of pseudo-absences 
was set at 10,000 (following Barbet-Massin et al., 2012), and the model incorporated 
only linear and quadratic features to avoid over-fitting. 

To account for unequal survey coverage in the species data, each SDM was fit with a 
bias grid to control for any violation in the assumption of independence in the response 
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data that would increase the likelihood of type I errors (Fourcarde et al., 2014). A bias grid 
is the equivalent of a sampling probability surface, where the cell values reflect sampling 
effort and provides a weight to the pseudo-absence data used in modelling. Following 
Elith et al. (2010), a Gaussian kernel density map of the occurrence locations within 10km 
was derived and divided by the weighted number of terrestrial cells in the neighbourhood 
in order to avoid the edge effects at the coastline. This was then rescaled so that values 
varied between 1 and 20 in order to control for the impact of extreme variation. Bias grids 
are presented in Supplementary Information 1 to provide an overview of the spatial bias 
in occurrence records. 

Scenario A

Abiotic factors represent the physiological tolerances of species (i.e. temperature, 
precipitation) meaning climate variables best represent these factors. WorldClim v2.1 
has interpolations of observed data from ~1970-2000, with 19 bioclimatic variables 
derived from the monthly temperature and rainfall values (Fick and Hijmans, 2017). The 
15 abiotic variables used by Alkishe et al. (2017) were used within this study to allow for 
a direct comparison with recent European continental predictions, with variables 8-9 and 
18-19 removed due to spatial artefacts. See Table 1 for variable code and description. 

Figure 2. Conceptual workflow of the methodological steps



111Irish Geography

Table 2. Description of the abiotic representations used within parameterised models

Code Variable 

Bio1 Annual mean temperature 

Bio2 Mean diurnal range 

Bio3 Isothermality 

Bio4 Temperature seasonality 

Bio5 Maximum temperature of warmest month 

Bio6 Minimum temperature of coldest month 

Bio7 Temperature annual range 

Bio8 Mean temperature of wettest quarter 

Bio9 Mean temperature of driest quarter 

Bio10 Mean temperature of warmest quarter 

Bio11 Mean temperature of coldest quarter 

Bio12 Annual precipitation 

Bio13 Precipitation of wettest month 

Bio14 Precipitation of driest month 

Bio15 Precipitation seasonality 

Bio16 Precipitation of wettest quarter 

Bio17 Precipitation of driest quarter 

Bio18 Precipitation of warmest quarter 

Bio19 Precipitation of coldest quarter 

Scenario B
Biotic factors represent interactions with other species (i.e. parasitism, competition). 
As ticks are dependent on host species, the biotic factors in this study consisted of the 
distributions of sixteen mammalian hosts. Of the 27 host species listed by Kelly et al. 
(2001), nine were excluded due to their domestication which would prevent reliable 
habitat suitability predictions. Humans were excluded as a host species, due to the 
obvious clustering in urban areas, and two other species (goat, mink) were excluded due 
to inadequate observations in GBIF (2019). The final list of mammalian species consisted 
of: hedgehog, pygmy shrew, rabbit, grey squirrel, red squirrel, bank vole, wood mouse, 
brown rat, fox, pine marten, stoat, badger, fallow deer, red deer, sika deer, and hare. 
The distribution of these sixteen species was predicted using the observed locations from 
GBIF (2019) since 2000, the fifteen abiotic variables (Fink and Hijmans, 2017), the land 
cover data (EEA 2018), and projected using MaxEnt with the same settings and bias grids 
outlined above. 

Recent research has indicated different predictive accuracies in using presence-
absence of host species compared to habitat suitability (Raath et al., 2018). Therefore, 
four methods of incorporating biotic factors were investigated (Table 2). Both habitat 
suitability (hs.ind) and presence-absence (pa.ind) of all sixteen species were incorporated 
as individual explanatory variables, as well as an ensemble model (i.e. average or 
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summation of multiple projections) of both habitat suitability (hs.ens) and presence-
absence (pa.ens). Thresholds for generating binary presence-absence models from 
habitat suitability were calculated using maximum sensitivity plus specificity.

Table 2. Description of the biotic representations used within parameterised models

Biotic Representation Explanation

hs.ind Individual maps of habitat suitability for all 16 host species 

pa.ind Individual maps of presence-absence for all 16 host species

hs.ens
Ensemble map of habitat suitability projections. The mean habitat 
suitability of all 16 host species

pa.ens
Ensemble map of presence-absence projections. Sum of all presence-
absence maps for the 16 host species. Equivalent of projected host 
diversity

Scenario BA 

This scenario projects the potential distribution in the BAM framework. Both abiotic (i.e. 
the fifteen bioclimatic variables) and biotic (i.e. distributions of the sixteen host species) 
variables were used as the input variables in the statistical model. Again, all four methods 
of incorporating biotic factors were included in different iterations of the statistical model.

Model Evaluation

Model evaluation in SDM focuses on quantifying prediction accuracy to ascertain model 
validity. To test our models, we withheld 20% of the 132 tick occurrence records from 
training the statistical model for testing as is common practice in SDM research when 
independent test data are lacking (Franklin, 2009). This testing dataset was then used 
to evaluate the performance of our models. We used three accuracy metrics that are best 
suited for presence-only data; lowest possible threshold (LPT), minimum predicted area 
(MPA) and the Boyce Index (BI). LPT is the value that results in zero omission errors, 
with higher values indicating a better model. MPA represents the area encompassing a 
predefined proportion of observed species occurrences (in this case 90 percent), with 
a lower value (measured in geographic area) representing a more parsimonious model 
(Engler et al., 2004). The BI implements a moving window analysis across the predicted 
values, using Spearman rank correlation coefficient to measure the monotonic increase 
in the predicted-to-expected frequency ratio with increasing habitat suitability (Boyce et 
al., 2002). This method was undertaken using the ecospat package (Broenniman et al., 
2014) in R 3.6.1 (R Development Core Team, 2008) using default settings, with values 
ranging from -1 to 1, with higher values representing more parsimonious models, and 0 
indicating predictions indifferent from a random model.
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Results
The projected tick distributions and subsequent model accuracies varied substantially 
across the different implementations of A, B, and BA (Figure 3, Table 3). The model 
parameterised only on A (Figure 3a) reported high probability (>0.5) for the south and 
west of Ireland, as well as Wales, the south, southwest and northwest of England, and 
eastern Scotland, with low probability (<0.5) of occurrence for the remainder of Ireland 
and eastern England. Models parameterised including representations of host species (B, 
BA) consistently projected the southwest of the UK as suitable, with much wider spatial 
variation elsewhere. When the percentage contribution and permutation importance of 
the host species was explored in models that incorporated biotic factors (Table 4), the 
distribution of sika deer and bank voles was continually high across all models (10-40%), 
as well as contributing to large gains in the final models (Supplementary Information 2), 
suggesting the distribution of these host species may be an important driver in determining 
tick distributions and supporting the high probability within the southwest regions of the 
study area. For B (pa.ens) and B (hs.ens) where only the ensembled representation of 
biotic factors were used in model parameterisation, clear overfitting of the data occurred, 
with large swaths of the study area projected as suitable (Figure 3d-e). The BA models 
appear to have much more localised areas of high suitability (>0.5) across all counties in 
Ireland and the UK, which most likely reflects a more ecologically realistic distribution. 

Table 3. The three accuracy metrics used to evaluate model performance; lowest possible 
threshold (LPT), minimum predicted area (MPA) and the Boyce Index (BI). Three ‘BAM’ 
scenarios were explored; biotic (B), abiotic (A) and biotic-abiotic (BA) scenarios, and four 
representations of biotic factors. The four representations are individual habitat suitability 
maps of all hosts (hs.ind), individual presence-absence maps of all hosts (pa.ind), ensemble 
map of mean habitat suitability for all hosts (hs.ens), and ensemble map representing 
summation of all binary presence-absence maps (pa.ens).

LPT MPA BI

A 0.250 214066 0.896

B (hs.ind) 0.238 147349 0.769

B (pa.ind) 0.252 145331 0.727

B (hs.ens) 0.540 241599 0.842

B (pa.ens) 0.327 220647 0.879

BA (hs.ind) 0.278 112787 0.664

BA (pa.ind) 0.247 171757 0.873

BA (hs.ens) 0.151 92740 0.925

BA (pa.ens) 0.262 110689 0.934
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Certain species were reported as contributing heavily to the projections when measured 
using one representation, but not the other (Table 4, Supplementary Information 2). For 
example, rabbit and hare distributions had higher gains for models when measured using 
habitat suitability compared to presence-absence (Supplementary Information 2), and 
contributed more to final models when represented as habitat suitability, with rabbits 
contributing 0% to the final models when represented as presence-absence (Table 4). 
Alternatively, red deer distributions contributed more when measured using presence-
absence compared to habitat suitability (Table 4). 

There was discrepancy in model validity when measured using the different accuracy 
metrics, with LPT, MPA, and BI indicating the most accurate models as B (hs.ens), BA (hs.

Figure 3. Distribution maps for Ixodes ricinus in Ireland and the UK. Models parameterized 
on a) abiotic variables, b) biotic (hs.ind), c) biotic (pa.ind), d) biotic (hs.ens), e) biotic (pa.
ens), f) biotic-abiotic (hs.ind), g) biotic-abiotic (pa.ind), h) biotic-abiotic (hs.ens), and i) 
biotic-abiotic (pa.ens).
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ens), and BA (pa.ens) respectively (Table 3). LPT rewards correct prediction of presences, 
often resulting in a high commission error (i.e. high false positive rate), which aligns with 
the observed overfitting for models B (pa.ens) and B (hs.ens) (Figure 3d-e). MPA and BI 
both attempt to control omission errors (i.e. false negatives), with the BI considered the 
more robust metric due to its ability to measure the monotonic increase in the predicted-
to-expected frequency ratio with increasing habitat suitability (Hirzel et al., 2006). Models 
BA (hs.ens) and BA (pa.ens) both reported BI values above 0.9 and low MPA values 
suggesting a combination of abiotic variables with only one variable representing host 
diversity reports the most valid projection of tick distributions. Jackknife testing was used 
to evaluate variable importance to the final models, with the ensemble representations of 
host species reporting the highest gain in model performance when used in isolation for 
the BA (pa.ens) parameterisations and the largest decrease in gain in model performance 
when removed from both the BA (pa.ens) and BA (hs.ens) parameterisations (Figure 4). 

Figure 4. Regularised training gain from the jackknife test of variable importance. The 
environmental variable with the highest gain has the most useful information when models 
are parameterised solely on that variable. The environmental variable with the largest 
decrease in gain when omitted from model parameterisation has the most information that 
is not present in the other variables.
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Table 4: Percent Contribution (PC) and Permutation Importance (PI) of the different 
environmental variables used in the final models. The four representations are individual 
habitat suitability maps of all hosts (hs.ind), individual presence-absence maps of all hosts 
(pa.ind), ensemble map of average habitat suitability for all hosts (hs.ens), and ensemble 
map representing summation of all binary presence-absence maps (pa.ens). Biotic 
representations using ensembles B (hs.ens) and B (pa.ens) are not included in table as they 
only contain one variable, which contributes 100% to the final models. See Table 1 for a 
description of the abiotic (A) codes. 

Abiotic 
(A)

Biotic 
(hs.ind)

Biotic 
(pa.ind)

Biotic 
Abiotic 
(hs.ind)

Biotic 
Abiotic 
(pa.ind)

Biotic 
Abiotic 
(hs.ens)

Biotic 
Abiotic 

(pa.ens)

PC PI PC PI PC PI PC PI PC PI PC PI PC PI

A (bio1) 27.3 19.4 0.2 0.0 0.5 11.3 20.6 18.4 11.1 17.5

A (bio2) 1.5 9.5 2.8 1.1 0.7 9.1 1.2 13.6 0.7 10.0

A (bio3) 9.9 0.4 5.3 4.6 15.8 0.0 15.2 0.0 21.8 0.3

A (bio4) 3.7 7.9 0.0 0.0 1.3 10.3 6.6 5.1 6.5 7.8

A (bio5) 1.0 10.5 0.0 0.0 0.3 5.2 3.3 1.4 2.1 7.5

A (bio6) 4.2 8.1 0.2 2.2 0.4 5.8 7.3 12.8 1.2 9.9

A (bio7) 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0

A (bio10) 0.4 0.0 0.9 0.0 2.0 0.2 0.0 0.0 0.0 0.0

A (bio11) 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0

A (bio12) 0.2 2.6 3.1 0.0 0.4 3.9 0.7 7.6 0.5 3.6

A (bio13) 0.3 0.0 0.6 6.1 0.4 2.4 0.4 0.0 0.0 0.0

A (bio14) 19.2 22.8 3.5 17.2 6.7 21.9 14.5 18.7 11.6 18.9

A (bio15) 14.8 1.3 0.4 1.8 1.3 0.4 7.6 0.0 5.1 0.0

A (bio16) 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0

A (bio17) 17.7 17.6 1.0 16.1 4.8 18.5 8.5 14.8 9.2 17.2

B (ensemble) 13.8 7.5 30.2 7.4

B (fox) 0.2 0.0 0.0 0.0 1.9 0.8 0.0 0.0

B (sika deer) 37.0 17.9 21.4 16.5 32.6 0.5 13.5 1.0

B (red deer) 2.7 8.8 11.8 11.4 0.9 6.8 7.6 1.0

B (fallow deer) 1.1 0.7 2.2 0.0 1.6 0.0 1.3 0.0

B (hare) 7.1 15.4 4.4 5.5 1.9 2.3 1.9 0.0

B (wood mouse) 0.0 0.0 5.9 5.9 0.3 0.0 4.4 0.8

B (pygmy shrew) 2.0 4.2 1.2 2.3 0.1 0.7 0.2 0.0

B (grey squirrel) 1.6 8.9 1.6 4.1 3.5 8.8 3.6 1.6

B (red squirrel) 3.9 18.1 7.3 8.8 1.8 13.8 5.8 3.8

B (bank vole) 15.0 16.2 33.3 27.6 12.8 14.5 21.2 1.2

B (pine marten) 0.1 1.8 7.1 9.8 0.9 0.0 2.9 0.0

B (rat) 3.0 6.0 1.3 1.8 2.5 0.0 0.1 0.0

B (rabbit) 10.0 0.2 0.0 0.0 6.2 0.0 0.0 0.0

B (stoat) 0.9 1.0 2.5 6.4 0.5 2.5 2.8 1.5

B (badger) 0.1 0.7 0.0 0.0 0.4 0.0 0.0 0.0

B (hedgehog) 15.2 0.0 0.0 0.0 13.4 0.0 0.0 0.0
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Discussion
The aim of this study was to investigate the role of abiotic and biotic factors in determining 
tick distributions in Ireland and the UK, comparing methods of incorporating biotic 
variables into SDMs. From examining the models (Figure 3), it is evident that there are 
certain regions that are more suitable for I. ricinus when the roles of B, A, and BA are 
compared. The most suitable areas in Ireland appear to be in the south, west, southeast, 
and north, while in the UK the most suitable areas are the south-west region of England, 
Wales, and western Scotland, although we did identify high probabilities for suitable 
habitat in every county of Ireland and the UK (Figure 3). However, these areas do vary 
depending on the choice of environmental variables incorporated in the model. Previous 
continental scale projections of I. ricinus have identified the importance of abiotic 
variables in determining both current and future distributions (e.g. Alkishe et al., 2017), 
with our result identifying the importance of mean annual temperature and precipitation 
of the driest month as important variables (Figure 4, Table 4, Supplementary Information 
2); however, the results of this study also highlight the need to incorporate factors related 
to the distribution of host species.

The relatively lower accuracy of I. ricinus projections for models parameterised solely 
on abiotic (A) factors compared to both biotic and abiotic (BA) factors (Table 3) suggests 
that abiotic factors alone do not adequately capture the drivers of tick distributions. Due to 
the strong dependence of ticks on host species, we expected that tick distributions would 
exhibit positive relationships with host distributions. The presence of large mammals 
(e.g. sika deer, red deer) were often important in the final entropy models, while smaller 
mammals (e.g. bank voles) were also shown to be important to the relative percentage 
contribution and regularised training gain in the final models (Table 4, Supplementary 
Information 2). Improvements in model accuracy (Table 3) and ecological realism 
(Figure 3) corroborate other studies that have included explicit variables measuring 
biotic factors (e.g. Kissling et al., 2008; Donaldson et al., 2016), and our results suggest 
that to accurately and realistically ascertain the distribution of parasitic species, variables 
that account for such relationships must be included.

The models parameterised on the different representations of B varied greatly, 
highlighting the need for continued research into how such conceptualisations can affect 
results. We found that BA (pa.ens) was the most accurate when the BI was used as the 
accuracy metric (Table 3), corroborating the findings of Raath et al. (2018) who also 
found that a combined presence-absence map was the most accurate representation 
of B in their study of African silk moths. This variable represents the total number of 
projected host species in that grid (i.e. equivalent of host species richness). Subsequently, 
this model may outperform others due to its ability to incorporate information on all 
host species, rather than assuming dependence on only one or a handful of species. The 
areas predicted as highly suitable by this model (Figure 3e) correspond with areas that 
were projected to support 12-16 host species. Subsequently, a variable representing the 
host diversity in the model potentially captures the parasite-host relationships more 
realistically than individual habitat suitability maps of all host species or an average 
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habitat suitability of all hosts. Moreover, when each variable was tested for its importance 
to the final model through the jackknife test, the ensemble representations of host species 
reported the highest gain in model performance when used in isolation for BA (pa.ens) 
parameterisations, and the largest decrease in gain in model performance when removed 
from both the BA (pa.ens) and BA (hs.ens) parameterisations (Figure 4). Tick interactions 
with mammals such as sika deer (Kimura et al., 1995; Gray et al., 1999; Braticikov et 
al., 2019), red deer (Gray et al., 1999; Zintl et al., 2011; Razanske et al., 2019), foxes 
(Lappin, 2016; D’Amico et al., 2017; Sándor et al., 2017) and small rodents (Cayol et al., 
2017; Cull et al., 2018) are well established, meaning the dependence of I. ricinus on 
multiple host species is best represented through a measure of diversity and distribution 
rather than as a series of individual host distributions. 

Unsurprisingly many host distributions were continuously important in final models, 
both through the combined representation of host diversity, but also when included as 
individual species (Table 4, Supplementary Information 2). Sika deer and bank voles 
were consistently reported as important variables in final models, with these species 
exhibiting a strong positive relationship with forest cover (results not shown). The 
importance of vegetation cover for tick distributions and abundance is well established 
(Dobson et al., 2011a, 2011b), meaning there is the potential that our models confounded 
the importance of host distribution with land cover. To investigate this, we parameterised 
a model using the abiotic variables and land cover (Supplementary Information 3). 
This model performed poorly (LPT 0.299, MPA 150787, BI 0.727) compared to models 
parameterised with host distributions, highlighting the importance of considering the 
full ecological niche requirements of host species when projecting tick distributions. 

Moreover, the relative contribution and subsequent regularised training gain of 
biotic variables altered for individual species depending on whether the variable was 
represented as continuous habitat suitability or categorical presence-absence (Table 
4, Supplementary Information 2). The preference for binary representations appeared 
to occur for habitat specialist species (e.g. red deer, wood mouse, bank vole, stoat), 
suggesting that delineating the most suitable habitat from lesser habitat into presence-
absence improves projections of parasite-host relationships. A continuous representation 
favoured more habitat generalists (e.g. grey squirrel, rat, rabbit), in part due to their 
ubiquitous distributions, meaning binary representations predicted them as present 
throughout the study area. Therefore, for generalist species a continuous variable 
that captures nuances in the habitat suitability improves models when compared to a 
thresholded presence-absence map, although generalist species continually reported low 
contributions and gains to final models (Table 4, Supplementary Information 2). This 
should have important considerations for future SDM research when study species may 
only have one or two primary biotic interactions determining their potential distributions. 

Our results highlight the substantial impact of user decisions in how biotic factors are 
represented (Tables 3-4, Figures 3-4), and subsequently we have refrained from making 
grandiose statements considering our projections to be the definitive distribution of I. 
ricinus in Ireland and the UK. Research using such approaches for epidemiologically 
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important vector species must be aware of such uncertainties in model parameterisations 
and strive to incorporate or quantify these in projections (see Alkishe et al., 2020 for a 
comprehensive assessment of model uncertainty projecting global tick distributions). 
Similarly, while spatial bias in response data was controlled for by using a bias grid 
(Supplementary Information 1), the tick data (GBIF 2020) does vary spatially with a 
wider coverage of the UK (particularly England and Scotland) and a lower number of 
observations in Ireland and Wales, with a higher reporting of occurrence in coastal regions 
(i.e. four observations on the Aran Islands alone). Future research collecting verified tick 
locations that are made available through open data repositories is needed to improve 
model calibration and tick predictions, and supports recent calls for more comprehensive 
surveys, particularly in Ireland (Zintl et al., 2017). Despite these caveats, we do report 
high accuracy values (Table 3), allowing confidence in the discussion of the important 
environmental drivers of I. ricinus distributions. 

The importance of considering environmental variables, particularly in the context of 
the ‘BAM’ framework (Figure 1) is therefore imperative for distribution studies; however, 
we did not incorporate movement factors (M) in our models. M refers to the area that has 
been or will be accessible to a species within a certain timeframe. The majority of SDM 
research only incorporates movement when investigating response to climate change 
(Franklin, 2010; Holloway et al., 2016; Holloway and Miller, 2017). Recent research on 
tick distributions incorporating movement has identified the role of temporal variation 
in mammal movements resulting from land cover, and that such movements can have 
implications for tick distributions (Martin et al., 2018). Similarly, Halsey and Miller (2018) 
developed a spatial agent-based model to explore host-tick interactions, highlighting the 
possibility to combine such approaches and better inform on host-tick movements and 
interactions. Such approaches combining SDM and agent-based models are beginning 
to emerge that could create finer scale distribution models that can account for all three 
‘BAM’ factors (e.g. Holloway 2018), meaning future research should continue to explore 
the inter-linked relationships between biotic, abiotic, and movement variables. 

Finally, there persists a need to explore habitat suitability of I. ricinus in conjunction 
with other measures of biodiversity and epidemiology. It is important to note that ground 
feeding species of birds (e.g. blackbirds, redwings) have been found to be important hosts 
for Ixodes ticks, with some rural populations reportedly having infestation rates as high 
as 74% (Gregoire et al., 2002; Singh and Girshick, 2003). We opted only to investigate 
the role of mammalian host species; however, future research should look to incorporate 
information on avian distributions when projecting the geographic ranges of ticks. 
Similarly, we should also note that high habitat suitability does not necessarily indicate 
presence of breeding populations of ticks or Lyme disease. For example, Talleklint and 
Jaenson (1996) found a significant relationship between tick density and infection 
rates (of Lyme disease) at lower tick densities, while Gray et al. (1999) found that tick 
infection rates were inversely related to tick abundance. Dobson et al. (2011a) also found 
spatial variability in the abundance of ticks across recreational areas in the UK, recording 
uniform presence across vegetation types, but higher densities in plots which contained 
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trees. Healy and Bourke (2004) note that clusters of ticks and larvae should be used to 
identify breeding populations, which contradicts the predominant method in SDM of 
using binary representation of presence-absence. New methods, such as Poisson point 
process models, are emerging as suitable tools to predict the distribution and abundance 
of species from presence-only data (Warton and Shepherd, 2010; Renner and Warton, 
2013; Schank et al., 2017), and given the uncertain relationships identified, future 
studies should focus on developing predictions of both the distribution and density of 
ticks to inform epidemiological research.

Conclusion
Understanding the drivers of tick distributions is imperative for successful epidemiological 
precautions. Previous research has tended to focus only on the role of abiotic variables in 
determining tick distributions, and while research is beginning to emerge that highlights 
the importance of biotic variables (e.g. host distributions), there persists a need for the 
combined influence of A and B to be investigated together, as well as exploration into how 
best to represent biotic factors within SDM. Large differences in accuracy (Table 3) and 
area (Figures 3) were identified depending on the combination of ‘BAM’ variables used 
during model parameterisation. Representations of B varied substantially with results 
suggesting that a variable of host diversity captures the parasite-host relationships most 
accurately when coupled with abiotic factors (BA). The representation of host distribution 
also appeared to differ for habitat specialists and generalists (Table 4, Supplementary 
Information 2), suggesting use of a binary presence-absence conceptualisation and a 
continuous habitat suitability conceptualisation for specialist and generalist host species, 
respectively. There is now a minimum requirement for any research into tick distributions 
to explicitly incorporate biotic factors, as excluding the host-parasite relationship masks 
the true distribution of species and does not capture an ecological realistic distribution of 
a species’ habitat suitability. 
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